CLEAI, matematica generale, primo semestre, aa 2002–2003. Esercizi della prova scritta del 16 giugno 2003

Studio di funzione:

1. Disegnare il grafico della seguente funzione (la derivata seconda è facoltativa):

$$f(x) := \begin{cases} \frac{e^x}{x^2 - 1} & \text{se } x < -1\\ 2x - 1 & \text{se } x \ge -1 \end{cases}$$

Evidenziare in particolare i seguenti punti:

- (a) campo d'esistenza;
- (b) eventuali punti di discontinuità;
- (c) limiti;
- (d) crescenza e decrescenza;
- (e) asintoti;
- (f) tangente destra in x = -1.

2. Disegnare il grafico della seguente funzione (la derivata seconda è facoltativa):

$$f(x) := \begin{cases} \frac{e^x}{2x-1} & \text{se } x < 1/2\\ x^2-1 & \text{se } x \ge 1/2 \end{cases}$$

Evidenziare in particolare i seguenti punti:

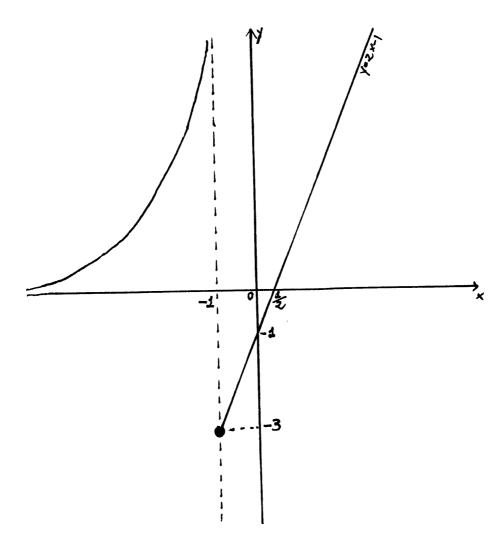
- (a) campo d'esistenza;
- (b) eventuali punti di discontinuità;
- (c) limiti;
- (d) crescenza e decrescenza;
- (e) asintoti;
- (f) tangente destra in x = 1/2.

3. Disegnare il grafico della seguente funzione (la derivata seconda è facoltativa):

$$f(x) := \begin{cases} \frac{e^x}{x^2 - 4} & \text{se } x < -2\\ x - 1 & \text{se } x \ge -2 \end{cases}$$

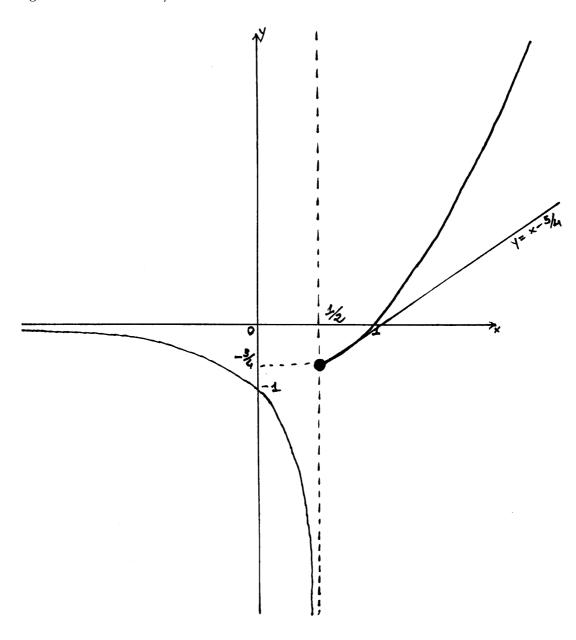
Evidenziare in particolare i seguenti punti:

- (a) campo d'esistenza;
- (b) eventuali punti di discontinuità;
- (c) limiti;
- (d) crescenza e decrescenza;
- (e) asintoti;
- (f) tangente destra in x = -2.

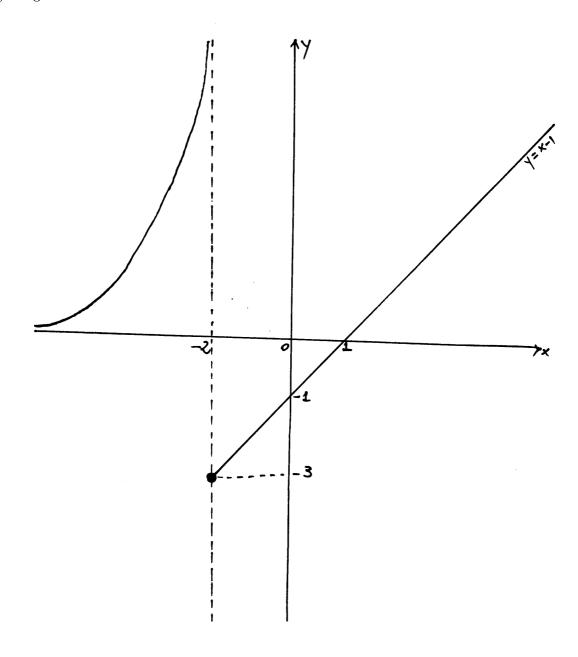

4. Disegnare il grafico della seguente funzione (la derivata seconda è facoltativa):

$$f(x) := \begin{cases} \frac{e^x}{x-1} & \text{se } x < 1\\ x^2 - 4 & \text{se } x \ge 1 \end{cases}$$

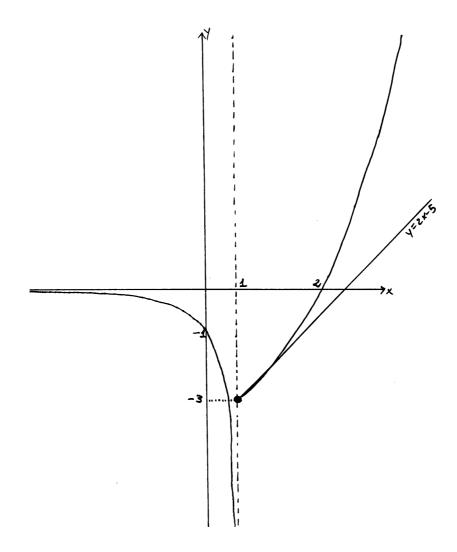
Evidenziare in particolare i seguenti punti:


- (a) campo d'esistenza;
- (b) eventuali punti di discontinuità;
- (c) limiti;
- (d) crescenza e decrescenza;
- (e) asintoti;
- (f) tangente destra in x = 1.

- 1. Data f(x) tramite il grafico in figura, determinare:
 - (a) campo d'esistenza;
 - (b) segno;
 - (c) eventuali punti di discontinuità;
 - (d) limiti;
 - (e) zeri;
 - (f) intersezioni con l'asse y;
 - (g) intervalli di crescenza e decrescenza;
 - (h) punti e valori critici;
 - (i) estremi locali e globali;
 - (j) asintoti;
 - (k) tangente destra in x = -1.


2. Data f(x) tramite il grafico in figura, determinare:

- (a) campo d'esistenza;
- (b) segno;
- (c) eventuali punti di discontinuità;
- (d) limiti;
- (e) zeri;
- (f) intersezioni con l'asse y;
- (g) intervalli di crescenza e decrescenza;
- (h) punti e valori critici;
- (i) estremi locali e globali;
- (j) asintoti;
- (k) tangente destra in x = 1/2.


3. Data f(x) tramite il grafico in figura, determinare:

- (a) campo d'esistenza;
- (b) segno;
- (c) eventuali punti di discontinuità;
- (d) limiti;
- (e) zeri;
- (f) intersezioni con l'asse y;
- (g) intervalli di crescenza e decrescenza;
- (h) punti e valori critici;
- (i) estremi locali e globali;
- (j) asintoti;
- (k) tangente destra in x = -2.

4. Data f(x) tramite il grafico in figura, determinare:

- (a) campo d'esistenza;
- (b) segno;
- (c) eventuali punti di discontinuità;
- (d) limiti;
- (e) zeri;
- (f) intersezioni con l'asse y;
- (g) intervalli di crescenza e decrescenza;
- (h) punti e valori critici;
- (i) estremi locali e globali;
- (j) asintoti;
- (k) tangente destra in x = 1.

Massimi e minimi:

1. Determinare i punti e i valori di minimo e massimo (locali e globali) sull'intervallo (-1, 1] della seguente funzione:

$$f(x) := x^4 - 1$$

2. Determinare i punti e i valori di minimo e massimo (locali e globali) sull'intervallo (-1, 1] della seguente funzione:

$$f(x) := x^3 - 1$$

Zeri:

- 1. Stabilire se $f(x) := e^x + \ln(x^2)$ ammette degli zeri su $(0, +\infty)$. In caso affermativo, dire quanti sono gli zeri e stimarli con precisione di almeno un'unità.
- 2. Stabilire se $f(x) := e^{(x^2)} + \ln x$ ammette degli zeri su $(0, +\infty)$. In caso affermativo, dire quanti sono gli zeri e stimarli con precisione di almeno un'unità.

Punti fissi:

- 1. Stabilire se la curva $f(x) := -e^x 1$ e la retta y = x si intersecano. In caso affermativo, dire quanti sono i punti di intersezione e stimarne le ascisse con precisione di almeno un'unità;
 - discutere i punti fissi di $f(x) := -e^x 1$.
- Stabilire se la curva $f(x) := -e^x 2$ e la retta y = x si intersecano. In caso affermativo, dire quanti sono i punti di intersezione e stimarne le ascisse con precisione di almeno un'unità;
 - discutere i punti fissi di $f(x) := -e^x 2$.

Teorico:

- 1. Dire se $f(x) := 2e^{\sqrt{\ln|x|}} \log(x^{123})$ ammette massimo e minimo globale nell'intervallo [1, 2] (giustificare la risposta).
- 2. Dire se $f(x) := \ln \sqrt{|x|}$ assume il valore $\ln(3/2)$ nell'intervallo [1, 4] (giustificare la risposta).
- 3. Dire se $f(x) := 7e^{\sqrt{|x^7-x^5+157|}}$ ammette un punto critico nell'intervallo [0,1] (giustificare la risposta).